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Abstract
A third-order linear homogeneous differential equation is first derived for the
local density of s-states only, Ns(r,E), for a general central potential V (r).
The major example presented is then for the bare Coulomb potential −Ze2/r ,
for which analytical forms are obtained for both Ns(r,E) and for the total
density of states N(r,E). In the appendix, the repulsive linear potential case is
also solved analytically.

PACS numbers: 02.30.Jr, 73.20.At

1. Background

For the Coulomb potential, available evidence strongly suggests that s-states are sufficient to
solve the problem of the electron density ρ(r,E), i.e., the number of electrons below energy
E at a distance r from the nucleus. In particular, earlier work on bound states gave the spatial
generalization of Kato’s theorem as [1]

∂ρ

∂r
= −2Z

a0
ρs(r) (1)

and this was extended to the off-diagonal density, equivalent to the Dirac density matrix
γ (r, r0), by Theophilou and March [2]. While equation (1) was derived specifically for a
finite number of bound states, our concern here is with ρ(r, E) when the energy E lies in the
continuum.

2. Differential equation for local density of states

Starting then with the diagonal density ρ(r,E) and its s-state counterpart ρs(r, E), let us define
the corresponding local density of states as
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N(r,E) = ∂ρ(r,E)

∂E
Ns(r,E) = ∂ρs(r, E)

∂E
(2)

respectively.
March and Murray in an early study [3] gave a differential equation for ρs(r, E) which

reads, in atomic units in which m = 1, h̄ = 1, and a0 = 1
1

8

∂3

∂r3
(r2ρs) − 1

2

∂V

∂r
r2ρs − V

∂

∂r
(r2ρs) +

∫ E

0
E

∂2

∂r∂E
(r2ρs) dE = 0. (3)

Therefore the s-state density of levels satisfies
1

8

∂3

∂r3
(r2Ns) + (E − V )

∂

∂r
(r2Ns) − V ′

2
r2Ns = 0. (4)

It is readily verified that the solution of equation (4) with V = 0 is

N(0)
s (r, E) = 1

4π2kr2
[1 − cos(2kr)] (5)

which is easily shown to be true by direct calculation for free electrons. In fact, equation (5)
can be generalized for p, d, f, etc states, the results being set out in appendix A.

The main result, to be utilized below, is equation (4) giving the local density of s-states
Ns(r,E) in the continuum at energy E, for a given central field represented by the potential
energy V (r).

3. Analytical solution of equation (4) for the bare Coulomb field

A general solution of equation (4) can be constructed in terms of Whittaker functions M and
W (see [4]) for the case when V = −Z/r . The solution, having three arbitrary constants since
equation (4) is third order, is

r2Ns(r,E) = C1W

(
− iZ

2

√
2

E
,
1

2
, 2i

√
2Er

)2

+ C2M

(
− iZ

2

√
2

E
,
1

2
, 2i

√
2Er

)2

+ C3W

(
− iZ

2

√
2

E
,
1

2
, 2i

√
2Er

)
M

(
− iZ

2

√
2

E
,
1

2
, 2i

√
2Er

)
. (6)

This can readily be verified by substitution of equation (6) into equation (4) and subsequent
use of the differential equation satisfied by the Whittaker functions.

When the potential goes to zero (Z → 0), the Whittaker functions become

M(0, 1/2, i2
√

2Er) = 2�(3/2)

√
i2

√
2ErI1/2(i

√
2Er)

= 2i sin(
√

2Er) (7)

and

W
(
0, 1/2, i2

√
2Er

) =
(

i2
√

2Er

π

)1/2

K1/2

(
i2

√
2Er

2

)

= exp

(
−i

2
√

2Er

2

)
(8)

where the I and K are modified Bessel functions. Using equations (6)–(8), we can readily
verify that in the limit Z → 0 equation (5) is regained, with appropriate choices of the
constants C1, C2 and C3. These are C1 = C3 = 0 and C2 = −1/8kπ2.

The next objective, having established the r-space dependence of the local density of
s-states in equation (6), is to generalize this treatment to find the total density of states
(essentially the weighted sum over all l-values from zero to infinity).
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3.1. First-order calculation of the total density of states

Assuming the spatial generalization of Kato’s theorem in equation (1) also applies in the
continuum, a point we shall return to below, we have

∂ρ(r,E)

∂r
= −2Z

a0
ρs(r, E) (9)

and taking an energy derivative, it follows that

∂N(r,E)

∂r
= −2Z

a0
Ns(r,E). (10)

Hence

N(r,E) − N0(E) = 2Z

a0

∫ ∞

r

Ns(r, E) dr (11)

where N0(E) is the total density of states for free electrons.
The considerable merit of equation (11) is that the right-hand side already has a factor Z,

and hence to calculate N(r,E) to first order in Z we can insert for Ns(r,E) on the right-hand
side the known free-electron result (5). Thus we find for N(r,E) to first order in Z the result

N(r,E) = N0(E) +
Z

a0

1

2πk

∫ ∞

r

1 − cos(2kr)

r2
dr. (12)

Now from [5] ∫
cos x

x2
dx = −cos x

x
− Si(x) Si(x) =

∫
sin x

x
dx. (13)

Hence we have that

N(r,E) = N0(E) +
Z

a0

1

2πk

[
1

r
−

{
cos(2kr)

r
− 2k

∫ ∞

2kr

sin x

x
dx

}]
. (14)

For selected values of energy E, a plot of this local density of states as a function of r is shown
in figure 1 in the form of [N(r,E) − N0(E)]/Z. Taking the limit r → 0 of this quantity from
equation (14), the value 1/2 is obtained.

Of course, equation (14) has been derived assuming that equation (9) applies in the
continuum. Though we have no general proof that this is so, we can alternatively calculate
N(r,E) from the linear response theory of March and Murray [3], which did not invoke Kato’s
theorem. From the study of March and Murray, when V (r) = −Ze2/r, we have, to first order
in Z,

ρ(r,E) − ρ0(E) = − mk2

4π3h̄2

∫
j1(2kr1)

r2
1

( −Ze2

|r − r1|
)

dr1. (15)

But the integral term has an electrostatic interpretation as the potential created by a ‘charge
density’ j1(2kr)/r2. The total charge Q(r) enclosed by a sphere of radius r is then

Q(r) =
∫ r

0

j1(2kr1)

r2
1

4πr2
1 dr1 = −4π

∫ 2kr

0

∂

∂(2kr1)
j0(2kr1)

d(2kr1)

2k

= −2π

k
[j0(2kr) − 1]. (16)

But from Poisson’s equation, the electrostatic potential Ves created by Q(r) is

Ves = −
∫ ∞

r

Q(r)

r2
dr (17)
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Figure 1. Plot of result for local density of states N(r,E) generated by a bare Coulomb potential
−Ze2/r , as given by equation (14). Note that, although there is some structure in the curves,
which is different for the different continuum energies E chosen, ∂N(r, E)/∂r is always �0, in
accord with the spatial generalization of Kato’s theorem asserted in equation (21). Of course, this
plot is valid only to first order in the Coulomb potential (see figure 3 below for a non-perturbative
plot of the local density of states).

therefore, we can write

ρ(r,E) − ρ0(E) = mk2

4π3h̄2 Ze2
∫ ∞

r

Q(r)

r2
dr (18)

or

∂ρ

∂r
= − mk2

4π3h̄2 Ze2 Q(r)

r2
= mk2

4π3h̄2

Ze2

r2

2π

k
[j0(2kr) − 1]. (19)

But the s-density for free electrons is given by (compare equation (5)):

ρ0(r, E) = k

4π2r2

[
1 − sin(2kr)

2kr

]
(20)

and therefore by comparing equations (19) and (20) it follows that

∂ρ(r,E)

∂r
= −2Z

a0
ρ0(r, E) (21)

which proves the assumption of the spatial generalization of Kato’s theorem to first order in Z
for a bare Coulomb potential.

3.2. Total density of states to all orders in nuclear charge

Evidently, but now more formally, we can use equation (11) in conjunction with the exact
form of Ns(r,E) in terms of the Whittaker functions M and W . Since the ‘constants’ of
integration C1, C2 and C3 (C1 and C3 zero for Z = 0) depend only on E and Z (at most), we
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have immediately

a0

2Z
[N(r,E) − N0(E)] = C1

∫ ∞

r

W 2(−iZ/k, 1/2, 2ikr)

r2
dr

+ C2

∫ ∞

r

M2(−iZ/k, 1/2, 2ikr)

r2
dr

+ C3

∫ ∞

r

M(−iZ/k, 1/2, 2ikr)W(−iZ/k, 1/2, 2ikr)

r2
dr. (22)

Having established equations (6) and (15) for Ns(r,E) and the total density of states, let us
return to the explicit evaluation of Ns(r,E), given in equation (26) immediately below.

Let us employ first the physical boundary condition that Ns(r → 0, E) tends to a nonzero
function of E. Then we must isolate the parts on the right-hand side of equation (6) which
tend to zero as r2. The limiting behaviour of W 2 is found from [4] to be

W 2(−iZ/k, 1/2, 2ikr) → [�(1 + iZ/k)]2 r → 0. (23)

Such behaviour from the term multiplying C1 cannot be cancelled by the terms involving C2

and C3 since the result corresponding to equation (23) for the function M2 is

M2(−iZ/k, 1/2, 2ikr) → 0 r → 0. (24)

Thus the first conclusion is that C1 must be put equal to zero, as was found above to be the
case also for the free-electron limit Z → 0.

The next question to resolve is whether C3 must also be put to zero, as in the free-electron
case discussed above. To decide the answer, one needs to extend the result (24) to determine
the manner in which M2 → 0 as r → 0. A hint is already available from equation (7) for free
electrons, which shows that

M2
Z=0(r, E) → −8Er2. (25)

If equation (25), giving M2(r, E) → f (E,Z)r2 applies for all Z, then evidently C3 must be
put to zero as for free electrons. This is in fact the case, from properties of the Whittaker
functions, for arbitrary Z. Then the desired physical result for the local density of s-states is
given by

Ns(r,E) = C2

M2
(− iZ

2

√
2
E
, 1

2 , 2i
√

2Er
)

r2
. (26)

This result for Ns/C2 is plotted versus r in figure 2 for a few values of the energy E, for
the case Z = 10. Equation (26) reduces to the free-electron limit N(0)

s (r, E) in equation (5)
when C2(Z = 0) = −1/8kπ2, with k = √

2E, using the limiting form of M as Z → 0 in
equation (7). The form for small r is

Ns(r,E) = C2
[−8E + 16EZr − 8

3E(−2E + 5Z2)r2 + O(r3)
]
. (27)

Finally, we have inserted the result (26) into equation (11) to obtain [N(r,E)−N0(E)]/C2

and this quantity is displayed as a function of r, for a few values of E, and Z = 10, in
figure 3.

4. Summary and future directions

The main results of the present study are as follows:

(i) The third-order linear homogeneous differential equation (4) for the local density of states
Ns(r,E) for s-waves only with E in the continuum, for the central potential V (r);

(ii) Its solution (5) for free electrons;
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Figure 2. (a) Shows plot of local density of s-states, Ns(r, E) versus r for two energies E = k2/2,
and for Z = 10. The ratio of the values of the two curves is correctly given in the plots shown.
(b) For contrast with the attractive potential corresponding to Z = 10 in figure 2(a), the plot shown
is for a repulsive potential corresponding to Z = −4. Again the ratio of the values of the two
curves shown gives the ratio of the s-state (only) density of states Ns(r,E), with E = k2/2. Note
that, as in figure 2(a), there is a finite slope at the origin (see equation (27)).

(iii) The general solution (6), with three arbitrary quantities Ci(Z,E), i = 1, 2 and 3, for the
Coulomb potential −Z/r;

(iv) The physical solution for Ns(r,E) in equation (26) for arbitrary Z, i.e., for both an
attractive potential with an infinite number of bound states, plus continuum states, and for
negative Z, for which, of course, there are only states with E > 0.
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Figure 3. Local density of states obtained non-perturbatively, by assuming that the spatial
generalization of Kato’s theorem applies for energies E lying in the continuum. Note that this
result (21) has been proved to first order in the perturbing charge Ze in section 3.1. It also follows
at r = 0 for all Z from equation (27) and the results of appendix A. The plot in this figure is to
be compared with the perturbative results in figure 1, the value of Z = 10 being adopted in the
non-perturbative calculations.

It would be of interest for future work if physical solutions of equation (4) could be
found for other, more general, potentials, such as the screened Coulomb form V (r) =
−(Z/r) exp(−qr). Presently it is our impression that this case would need numerical solution
of the basic equation (4). However, analytical solution is possible for the linear potential
V ∝ r , and the results are recorded in appendix B.
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Appendix A. General solution of free particle and Coulomb local density of states for
arbitrary orbital angular momentum quantum number l

The general solution for the density of states for an arbitrary quantum number l for free
particles (limit Z → 0) is given by

Nl(r) = C1

J 2
l+1/2(kr)

r
+ C2

Y 2
l+1/2(kr)

r
+ C3

Jl+1/2(kr)Yl+1/2(kr)

r
(A1)

or in terms of spherical Bessel and spherical Neumann functions (written as jl(z) and n̄l(z)

respectively):

Nl(r) = 2C1k

π
j 2
l (kr) +

2C2k

π
n̄2

l (kr) +
2C3k

π
jl(kr)n̄l(kr). (A2)
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March and Murray gave for the integrated density of states for l = 1 the form

ρ1(r, E) = 1

4πr2

{
k +

sin(2kr)

2r
+

cos(2kr) − 1

kr2

}
.

Hence,
∂ρ1

∂E
≡ 1

k

∂ρ1

∂k
= 1

4πkr2

[(
1 +

1

k2r2

)
+

(
1 − 1

k2r2

)
cos(2kr) − 2

sin(2kr)

kr

]
. (A3)

Thus, for l = 1, this must be equated to equation (A2) to yield

N1(r, E) = 2C1k

π

[
sin2 kr

(kr)4
− 2

sin kr cos kr

(kr)3
+

cos2 kr

(kr)2

]

+
2C2k

π

[
cos2 kr

(kr)4
+ 2

sin kr cos kr

(kr)3
+

sin2 kr

(kr)2

]
(A4)

where C3 has already been put equal to zero because of the presence of a term more singular
at the origin than any terms involving C1 and C2. But on closer inspection, C2 must also equal
zero because of different singular behaviour at r = 0. Thus, equation (A4) with C2 put to zero
has to be compared with equation (A3), and to do so we rearrange (A4) to read

N1(r, E) = 2C1k

π

[
1 − cos 2kr

2(kr)4
− sin 2kr

(kr)3
+

1 + cos 2kr

2(kr)2

]

= C1

πkr2

[(
1 +

1

k2r2

)
+

(
1 − 1

k2r2

)
cos 2kr − 2

sin 2kr

kr

]
(A5)

which agrees with equation (A3) if C1 is chosen to equal 1/4.

For the Coulomb potential, the general solution for the density of states for an arbitrary
quantum number l is given by

r2Nl(r,E) = C1W

(
− iZ

2

√
2

E
, l +

1

2
, 2i

√
2Er

)2

+ C2M

(
− iZ

2

√
2

E
, l +

1

2
, 2i

√
2Er

)2

+ C3W

(
− iZ

2

√
2

E
, l +

1

2
, 2i

√
2Er

)
M

(
− iZ

2

√
2

E
, l +

1

2
, 2i

√
2Er

)
(A6)

with C1, C2 and C3 being constants. Considerations similar to those discussed in section 3
lead one to set C1 = C3 = 0. It is not difficult to expand the expression for r2Nl(r,E) above
to low order in r, and then to sum (multiplying by the appropriate degeneracy factor 2l + 1)
over all l from zero to infinity to find a total density of states N∞(r, E) going as

r2N∞(r, E)/C2 � −16E4r2

(16E4r2 + 1)
+ 2rZ ln(16E4r2 + 1). (A7)

for small r.

Appendix B. Solution for local density of states for the linear potential V (r) ∝ r

For a potential V (r) = cr , with c being a (negative) constant corresponding to a repulsive
potential, a solution of equation (6) can be found in terms of the Airy functions Ai and Bi as

Ns(r,E) = C1
Ai

(− (−2c)1/3(−E+cr)

c

)2

r2
+ C2

Bi
(− (−2c)1/3(−E+cr)

c

)2

r2

+ C3
Bi

(− (−2c)1/3(−E+cr)

c

)
Ai

(− (−2c)1/3(−E+cr)

c

)
r2

(B1)
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as can be verified by substitution and subsequent use of the differential equation satisfied by
the Airy functions. Since the Airy functions can be converted to the modified Bessel functions
I and K, with

Ai(z) = 1

π

√
z

3
K

(
1

3
,

2z3/2

3

)
(B2)

and

Bi(z) =
√

z

3

(
I

(
−1

3
,

2z3/2

3

)
+ I

(
1

3
,

2z3/2

3

))
(B3)

the solution can equally well be written in terms of Bessel functions of order ±1/3.
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